

Department of Aeronautics and Astronautics, Kyoto University Fluid Dynamics Laboratory Toward Understanding Complex Flows

Takaji INAMURO Taku OHWADA Hiroshi SUGIMOTO

Complex flows such as two-phase flows in micro electro mechanical systems (MEMS), molecular gas flows in aerospace and vacuum engineering, flow phenomena of functional materials, and flows with evaporation and condensation are recently of great interest. We are aiming at investigating the complex flows from the point of view in micro and nano scales by using theoretical, experimental, and

Two-phase flow simulation in a branch

We investigate two-phase flows in a branch of air conditioning systems by LBM. The equal divergence of liquid through outlets is an important issue of

outlet outlet

numerical approaches.

Simulation of binary droplet collision

The phenomena of binary droplet collision are of fundamental importance in the studies of raindrop formation, spraying processes, dispersed phase systems, and so on. We investigate the collision dynamics by using the lattice Boltzmann method (LBM) for two-phase flows with large density ratios. The effects of droplet rotations on the collision and mixing processes are shown in the figure below.

Two-phase flow simulation in a micro porous structure

The investigation of two-phase flows in micro porous structure is important issue in connection with the development of fuel cells. The results below show two-phase flows through a micro lattice structure. We focus on the behavior of water in the structure

High-resolution schemes for compressible flows by kinetic approach

supersonic flows around a forward-facing step (Ma=3)

shock boundary layer interaction

 $(Ma=2, Re=2.96 \times 10^5)$

and obtain the permeability of water through the

structure.

solve a segment of modelized porous structure

Rarefied gas flows induced by temperature field

In rarefied gases, various flows are induced by the temperature field of the gas even if there is no gravitational force. We research the engineering application of these phenomena by experiments and theory

of rarefied gas dynamics.

Experimental apparatus of the thermal transpiration and thermal edge flows

The gas separator. A mixture of gases is confined in a channel

equipped with heated and unheated plates. The smaller molecules concentrate to one end of the channel.

